

Executive Office of Energy and Environmental Affairs

Office of Technical Assistance and Technology

Fact Sheet

Reporting Water Dissociable Nitrates

This advisory is of interest to Massachusetts facilities that use and neutralize nitric acid on site. Such facilities are subject to reporting requirements for the production of water dissociable nitrate compounds resulting from nitric acid neutralization.

On site visits conducted by Office of Technical Assistance and Technology (OTA) staff indicate that many facilities neutralizing nitric acid may not be aware of these associated reporting obligations.

While nitric acid itself is a reportable chemical under the Emergency Planning Community Right-to-know Act (EPCRA) Section 313 (also known as the Toxics Release Inventory) and the Massachusetts Toxics Use Reduction Act (TURA), facilities should also be aware that the neutralization byproduct of nitric acid generates water dissociable nitrate compounds that are reportable above specific threshold levels* under EPCRA and TURA.

* The threshold for reporting coincidentally manufactured water dissociable nitrate compounds under EPCRA and TURA is 25,000 lbs per year.

For complete information, facilities should consult the U.S. EPA guidance on reporting water dissociable nitrate compounds (EPA document #EPA745R99008) or view it online at: http://www.epa.gov/triinter/guide_docs/2000/nitrates2000.pdf.

Below is a brief summary of the calculation facilities may use to determine whether their neutralization of nitric acid generates levels of water dissociable nitrate compounds in excess of the EPCRA/TURA thresholds.

In addition, OTA has developed a Microsoft Excel spreadsheet to help facilities estimate the amount of water dissociable nitrate compounds generated from nitric acid neutralization.

Example threshold calculation:

For this example, nitric acid (HNO3) is neutralized with sodium hydroxide (NaOH), producing nitrate compounds in the form of sodium nitrate (NaNO3). This calculation defines the amount of nitric acid (in pounds) a facility must neutralize to exceed the EPCRA/TURA reporting thresholds.

Neutralization reaction: HNO₃ + NaOH -> NaNO₃ + H₂O

First, determine the molecular weight of HNO₃ and NaNO₃.

MW HNO₃ = $1 \times 63 \text{ kg/kmol}$

MW NaNO₃ = $1 \times 85 \text{ kg/kmol}$

Second, because the quantity of NaNO₃ generated (in kilomoles) is equivalent to the quantity of HNO₃ neutralized (in kilomoles), simply divide the molecular weight of HNO₃ by the molecular weight of NaNO₃. This gives a ratio of HNO3 neutralized versus NaNO₃ generated, in terms of their molecular weights.

 $(63 \text{ kg/kmol HNO}_3)/(85 \text{ kg/kmol NaNO}_3) = 0.74$

Third, multiply this ratio by the threshold reporting level for NaNO₃.

The threshold is 25,000 lbs per year.

(0.74)(25,000 lbs) = 18,529 lbs.

In this example, a facility neutralizing 18,529 lbs or more per year of HNO₃ with NaOH must report under EPCRA and TURA. See the respective rules reporting requirement guidelines for further information.

Form R and Form S Reporting Differences

In general, the amount of water dissociable nitrate compounds (in pounds) generated by the on-site neutralization of nitric acid are not considered "byproduct" under Form S (TURA) and should be reported as "coincidentally manufactured." For Form R (EPCRA), the total amount of nitrate compounds generated is used to determine whether reporting thresholds have been exceeded – however, only the total weight of the *nitrate ion* (NO_3) is reported as a "release."

Example

A facility determines that on-site neutralization of nitric acid generates 27,500 lbs. of NaNO₃ each year, which exceeds the relevant thresholds. On their Form S (TURA), the facility reports the 27,500 lbs as "coincidentally manufactured," since it is not generated directly from a production process and pounds of Byproduct.

On their Form R (EPCRA), the facility first finds the percentage of the nitrate compound (NaNO₃) generated that is NO₃. This is calculated using a ratio of the molecular weight for NO₃ to the molecular weight for NaNO₃.

```
MW of Na = 22.99 kg/kmol

MW of N = 14.01 kg/kmol

MW of O<sub>3</sub> = 16.00 kg/kmol x 3 = 48.00 kg/kmol

(MW of NO<sub>3</sub>)/(MW of NaNO<sub>3</sub>) = 62.01/85.00 = 0.73 = 73%
```

This determines that 73% of the nitrate compound is NO₃. Multiply the total amount of NaNO₃ generated by 73%.

 $27,5000 \times 0.73 = 20,075$ lbs of NO₃. In this case, the facility would report 20,075 lbs. as the amount of NO₃ released on its Form R.

This advisory is provided as part of OTA's non-regulatory technical and compliance assistance services, and should not be interpreted as constituting an official rule, regulation or law. The enforcement authority for EPCRA requirements is the U.S. Environmental Protection Agency (www.epa.gov). The enforcement authority for TURA requirements is the Massachusetts Department of Environmental Protection — (http://www.mass.gov/dep).

OTA Assistance Services

The Office of Technical Assistance and Technology (OTA) provides one-on-one technical assistance on pollution prevention (P2), toxics use reduction (TUR) and compliance – as well as guidance in the form of workshops, case studies, manuals and other materials. OTA helps toxics users in Massachusetts to identify TUR/P2 opportunities within their operations and initiate planning efforts. Contact OTA at:

100 Cambridge Street, Suite 900, Boston, MA 02114 Phone: (617) 626-1060 or on-line at www.mass.gov/envir/ota